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Quantum Algorithms 
A Test for the Laws of Physics
by Leonard J. Schulman

Forty-five years ago, when computers began to enter the 
academic and commercial world, researchers asked what 
types of problems could foreseeably be solved on them. As 
computers improved from year to year, it was clear that this 
question must be couched in a suitably abstract framework. 
Soon, the mathematician Jack Edmonds and others had fo-
cused on what we still consider a fundamental distinction: 
between the problems that can be solved in time bounded 
by a polynomial in the input size, and those that cannot. For 
computer scientists, the divide between problems solvable 
in polynomial time and all others is a useful, if rough, de-
marcation between the problems that are tractable (can be 
solved with reasonable effort) and those that are intractable. 

	 Early computer scientists studied a wide variety of phys-
ical implementations of computing devices, but when they 
modeled these mathematically, they discovered that the class 
of problems solvable in polynomial time never changed, and 
they called this class P. (Some prefer a variant, BPP, but we 
digress.) The class P could be perceived, then, as a property 
of physical reality—a limit on the computational power of 
physical devices. Although the concept of polynomial time 
was originally formulated to answer an engineering question, 
the class of problems P was quickly absorbed into a scientific 
assertion about what is physically possible in our universe. 
	 One problem that seemed to be intractable, or outside 
of polynomial time, is this: given a whole number, find its 
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factorization into primes. This task has intrigued mathema-
ticians at least since the early nineteenth century. Confi-
dence in its intractability was so strong that in the 1970s, in 
work for which, in 2002, they were given the Turing award 
(the highest award in computer science), Ron Rivest, Adi 
Shamir, and Leonard Adleman invented a cryptosystem 
(RSA) whose security depended on this assertion [A meth-
od for obtaining digital signatures and public-key crypto-
systems. C. ACM, 21:120-126, 1978]. Today their crypto-
system is widely used for commercial and other transactions. 
	 Early in the 1980s the physicist Richard Feynman ob-
served that computers were having difficulty with another 
kind of computation: simulating quantum mechanical dy-
namics [Simulating physics 
with computers. Internation-
al Journal of Theoretical Phys-
ics, 21 (6/7):467-488,1982]. 
This may at first seem un-
remarkable: all manner of 
physical processes, such as 
the weather, are hard to 
simulate. But Feynman’s 
difficulty was altogether 
greater. In the mathematical 
theory of quantum mechan-
ics, the number of param-
eters needed to describe a 
many-particle system grows 
exponentially in the number 
of particles. This is because 
each particle of the system is, to varying degrees, in each 
of its possible states at once—what is called a “superposi-
tion’’—and because to write down the state of the whole 
system we need to keep track of each way of combining 
the states of all the particles. As far as we know, the sys-
tem cannot be simulated without doing so. The problem of 
simulating quantum dynamics seems to lie far outside of P. 
	 Now, something about this picture is suspicious. Many 
problems are hard to compute, but the problem of simulat-
ing quantum dynamics should not be on that list. After all, 
the universe performs these computations all the time—in 
real time. What gives? Feynman suggested two possible 
resolutions. The first is:

(1) There is some clever, mysterious way of computing 
quantum mechanical simulations that doesn’t require writ-

ing down and updating all those exponentially-many pa-
rameters.

Feynman couldn’t think of one, nor has any other physicist, 
computer scientist, or mathematician. Indeed, the possibil-
ity seems to run counter to how quantum mechanics works. 
For the remainder of this essay, we’ll dismiss the possibility.

Feynman’s second suggestion was:

(2) Devices operating on the principles of quantum me-
chanics have inherently greater computational power than 
those operating on the principles of classical mechanics.

	 Feynman did not have 
the mathematical frame-
work (known as complex-
ity theory) to take pos-
sibility (2) further, but a 
decade later, the computer 
scientists Ethan Bern-
stein and Umesh Vazirani 
did [Quantum complexity 
theory. SIAM J. Comput., 
26(5):1411-1473, 1997. 
(STOC 1993)]. They were 
able to show (under cer-
tain abstract assumptions) 
that the class of tractable 
(polynomial-time solv-

able) problems is indeed greater in a quantum-mechanical 
world than it would be in a classical world. This is a deep 
scientific statement about what is or is not physically pos-
sible in our universe. Within a year, the computer scien-
tist Peter Shor had derived from it a great engineering ac-
complishment: a polynomial time algorithm  for factoring 
numbers on a quantum computer [Polynomial-time algo-
rithms for prime factorization and discrete logarithms on 
a quantum computer. SIAM J. Computing, 26:1484-1509, 
1997. (FOCS 1994)]. So it turns out that polynomial 
time, in a quantum mechanical universe, is adequate to 
solve problems that seem to require far more than poly-
nomial time if you rely only on classical physics processes.
	 To date, however, the prototype quantum comput-
ers that have been built are very limited. Shor’s algorithm, 
to be useful, must be run on a quantum computer large 

Research Note

What quantum 
computation has done 
is to take Schrödinger’s 

improbable feline spectre out 
of the realm of theory and 
into the arena of testable 
experimental predictions.



54 ENGenious  NO.7  2010

Research Note

enough to produce, and maintain and manipulate over an 
extended time, particular kinds of quantum superposi-
tions involving (at least) hundreds of particles. Superposi-
tions like this have never been observed. (Which is why 
we still get away with using RSA.) Indeed, the prediction 
that they exist has troubled physicists since the inception 
of quantum theory. Erwin Schrödinger, a founder of the 
theory, memorably told of a (hypothetical) cat in a simul-
taneous superposition of two states: alive and dead. The 
whole point of this image is that it is ridiculous—noth-
ing as complex as a cat has ever straddled reality so deli-
cately. Yet subatomic particles are always in superpositions, 
and quantum theory knows no size limit: what it pre-
scribes for particles, it predicts for cats...and for computers. 
	 What quantum computation has done is to take 
Schrödinger’s improbable feline spectre out of the realm of 
theory and into the arena of testable experimental predic-
tions. Since the computational implications of these predic-
tions are remarkable, it behooves us to consider an alterna-
tive remarkable possibility—that a quantum computer of 
a useful size is a physical impossibility, that large numbers 
cannot be quickly factored, that Schrödinger’s cat was never 
in danger—in short, a third possible way of resolving Feyn-
man’s conundrum:

(3)  Quantum theory is incorrect for large, complex systems.

	 Large quantum systems are so hard to control in the 
laboratory that our theory for them is only an extrapolation 
of what we know for small systems. Like earlier extrapo-
lations—Newtonian mechanics, which Albert Einstein re-
vised at high velocities, or the flatness of the earth, which 
the ancient Greeks revised at large distances—it might be 
wrong. Quantum computers, as computers, will probably 
not be useful until they contain hundreds of “quantum bits’’ 
(basically, particles involved in the computation). As experi-
mental tests of quantum mechanics, however, they are al-
ready charting new terrain: recent experiments have reached 
a dozen quantum bits.

	 Where do we stand? Quantum algorithms—noth-
ing but engineering designs—are so powerful that they 
pose a test to the laws of physics. In a manner of speaking, 
these algorithms have given teeth to Schrödinger’s trouble-
some cat, who is forcing us to discover something startling 
about the reality we live in. What will it be? Scenario (2), 

in which our previous understanding of computation is re-
vealed to have been fundamentally flawed? Or scenario (3), 
in which our understanding of physics turns out to have 
been no better? The only test is in the laboratory.  

Leonard Schulman is Professor of Computer Science 
Visit: http://www.cs.caltech.edu/~schulman


