Copyright Protection Probed at Mock Trial

By ROBERT LI

On Friday, the Fifth Annual Conference and Mock Trial “At the Crossroads of Law & Technology” was held. This event, which in years past dealt with important and controversial issues in law and technology such as software and DNA patenting, addressed this year the impact of digital copyright protection and the Digital Millennium Rights Act (DMCA).

The DMCA is the law passed by Congress in 1998 that criminalizes the circumvention or trafficking of tools that defeat protective measures on digital copyrighted content, such as software and DNA patenting, addressed this year the impact of digital copyright protection and the Digital Millennium Rights Act (DMCA).

In a related development, Cameron Mitchell, a student at the University of Minnesota, presented a paper titled “DMCA and the Copyright Protection of Software.” The paper discussed the implications of the DMCA for the software industry and the impact of the law on the development of new technologies.

By KEVIN BARTZ

A joint meeting between Student Affairs administrators and a representative from the Inter-house Committee to choose an architect for the long-awaited renovation of the South Houses has been slated for June 8. In a related development, Campus Life Director Tom Mannion is expected to hand down a decision next week on whether to house students in modular housing or in their current rooms.

The south houses have long awaited renovations to fix up various problems and to bring them up to code. The project is expected to cost over $3.3 million of the $36.5 million project for relocating students while construction teams renovate the South Houses—presently home to 287 students. The move would be temporary, affecting only the 2005-2006 academic year and the summers immediately before and after. Relocating students to the S. Catalina Ave. housing would mean displacing its 152 current graduate student residents.

The SAC will also be relocated in anticipation of the year-long construction, a move slated to happen by March in 2005 and which will put students back just under $1.1 million.

The SAC has tagged just over $3.3 million of the $36.5 million project for relocating students while construction teams renovate the South Houses—presently home to 287 students. The move would be temporary, affecting only the 2005-2006 academic year and the summers immediately before and after. Relocating students to the S. Catalina Ave. housing would mean displacing its 152 current graduate student residents.

The SAC will also be relocated in anticipation of the year-long construction, a move slated to happen by March in 2005 and which will put students back just under $1.1 million.

The SAC has tagged just over $3.3 million of the $36.5 million project for relocating students while construction teams renovate the South Houses—presently home to 287 students. The move would be temporary, affecting only the 2005-2006 academic year and the summers immediately before and after. Relocating students to the S. Catalina Ave. housing would mean displacing its 152 current graduate student residents.
run, they discovered that there was much more which needed to be done, making the day worthwhile.

"I didn't expect the stacks to be so involved. I supposed that you could say that everything surpassed my expectations by a notch. The stacks were very elaborate. A lot of thought was obviously put into the planning of it and just to realize how much that the seniors had to pull together in that short amount of time. I think that's insane," said Ho.

As Ditch Day 2004 wound down to a close, many people found time to reflect upon the experience.

"The end was the best part. Not in a negative way, but it was the best time to reflect upon the fact that everyone on campus thoroughly enjoyed themselves and that you were a part of an event that really was able to release Techers from their work and worries. For Fleming, we gathered atop the cannon after officially signaling the end of Ditch Day at 5 and took pictures. Being amongst the crowd of tired but happy and smiling faces is a fulfilling experience in of itself," said Tsai.

Along with reflection upon the uniqueness of the Ditch Day tradition, the end of the day left many underclassmen eager for next year. "I'm curious what the next class will think up," said Yu.
Jean-Paul Revel Back As Dean of Students

ASCIT Minutes
May 18, 2004
Absent: Jenny Fisher
Guests: Rumi Churnara, Matt Krogstad

Introduction:
1. Call to Order, 12:10 PM

New/Open Positions:
1. Congratulations to the newly selected student representatives of the following committees:
 - Library: Nyssa Thompson
 - REGIS: Joanna Cohen
 - Core Curriculum Steering Committee: Grant Chang-Chien, Kalsoom Haan, Francesca Colonnese (alt)
 - Academic Policies Committee: Francesca Colonnese, Litz Fehlauge, Angelina Ceras (alt)
 - Institute Size: Matt Krogstad
 - Students interested in the Library or REGIS committees should contact their ARC rep or Corinna Zygourakis.
 - Those interested in being an alternate on the Institute Size committee should contact Corinna Zygourakis.
 - The IHC will interview students for the South House renovations. The committee will see presentations by 3 or 4 architects on June 8 from 8 AM to 5 PM. If you have any questions, contact ihc@ugcs.caltech.edu.

3. The IHC will interview student representatives for the committee to select architects for the South House renovations. The committee will see presentations by 3 or 4 architects on June 8 from 8 AM to 5 PM. If you have any questions, contact ihc@ugcs.caltech.edu.

4. The Grievances Committee is looking for student representatives! This committee accepts complaints about any aspect of Caltech and its community. Interested students should contact ihc@ugcs.caltech.edu.

Money Requests:
5. Rumi Churnara and Mahtazardin Taghivand ask to take Professor Ali Hajimiri out to lunch at the Ath. Vote: 5-0-0 (approved).

Other Business:
6. BoD welcomes back Dr. Jean-Paul Revel as Dean of Students.

Meeting adjourned 12:30 PM.
Respectfully submitted,
Corinna Zygourakis
ASCIT Secretary

From top left, clockwise: Wei Lien Dang, Bin Wu, Peter Freddolino, Trevor Wilson, Van Qi, Isaac Hibburn and Harris Nover are this year's recipients of various academic awards

Undergraduate Academic Awards Presented to Outstanding Students

By MALINA CHANG

The Green, Froehlich, Haagen-Smit, Sigma Xi, Henry Ford II Scholar and Zeigler Awards were presented on May 18, 2004, at a luncheon in the Athenaeum, hosted by the Interim Dean of Students Rod Kiewiet and Associate Dean Barbara Green.

Isaac Hibburn, senior in Geophysics, and Harris Nover, senior in Mathematics, received the George W. Green Prize. The Green Prize is awarded to an undergraduate student in any class for original research, an original paper or essay, or other evidence of creative scholarship beyond the normal requirements of specific courses.

The Jack E. Froehlich Memorial Award is for outstanding juniors in the top 5% of the class. Wei Lien Stephen Dang, junior in Applied Physics was selected this year.

Van Qi, junior in Biology and Chemistry, won the Arle J. Haagen-Smit Memorial Award, which is given to a chemist or biologist who has shown academic promise and has made recognized contributions to Caltech.

Peter Freddolino, senior in Biology, received this year’s Sigma Xi award. This award is given to a senior for an outstanding piece of original scientific research.

Bin Wu, a junior in Electrical Engineering, is this year’s recipient of the Henry Ford II Scholar Award. This prize is given to the engineering student with the best academic record at the end of the third year of undergraduate study.

Trevor Wilson, sophomore in Mathematics has been chosen as this year’s winner of the Fredrick J. Zeigler Memorial Award. This award was established in 1989 to honor Frederick J. Zeigler, a member of the class of 1976 and an applied mathematician major. The award is given to a pure or applied mathematics student in the sophomore or junior year who has shown excellence in scholarship as demonstrated in class activities or in preparation of an original paper or essay in any subject area.

The Fredrick J. Zeigler Memorial Award is for outstanding juniors in the top 5% of the class. Wei Lien Stephen Dang, junior in Applied Physics was selected this year.

This prize is given to the chemist or biologist who has shown academic promise and has made recognized contributions to Caltech.

Peter Freddolino, senior in Biology, received this year’s Sigma Xi award. This award is given to a senior for an outstanding piece of original scientific research.

Bin Wu, a junior in Electrical Engineering, is this year’s recipient of the Henry Ford II Scholar Award. This prize is given to the engineering student with the best academic record at the end of the third year of undergraduate study.

Trevor Wilson, sophomore in Mathematics has been chosen as this year’s winner of the Fredrick J. Zeigler Memorial Award. This award was established in 1989 to honor Frederick J. Zeigler, a member of the class of 1976 and an applied mathematician major. The award is given to a pure or applied mathematics student in the sophomore or junior year who has shown excellence in scholarship as demonstrated in class activities or in preparation of an original paper or essay in any subject area.

The Fredrick J. Zeigler Memorial Award is for outstanding juniors in the top 5% of the class. Wei Lien Stephen Dang, junior in Applied Physics was selected this year.

This prize is given to the chemist or biologist who has shown academic promise and has made recognized contributions to Caltech.

Peter Freddolino, senior in Biology, received this year’s Sigma Xi award. This award is given to a senior for an outstanding piece of original scientific research.

Bin Wu, a junior in Electrical Engineering, is this year’s recipient of the Henry Ford II Scholar Award. This prize is given to the engineering student with the best academic record at the end of the third year of undergraduate study.

Trevor Wilson, sophomore in Mathematics has been chosen as this year’s winner of the Fredrick J. Zeigler Memorial Award. This award was established in 1989 to honor Frederick J. Zeigler, a member of the class of 1976 and an applied mathematician major. The award is given to a pure or applied mathematics student in the sophomore or junior year who has shown excellence in scholarship as demonstrated in class activities or in preparation of an original paper or essay in any subject area.

The Fredrick J. Zeigler Memorial Award is for outstanding juniors in the top 5% of the class. Wei Lien Stephen Dang, junior in Applied Physics was selected this year.

This prize is given to the chemist or biologist who has shown academic promise and has made recognized contributions to Caltech.

Peter Freddolino, senior in Biology, received this year’s Sigma Xi award. This award is given to a senior for an outstanding piece of original scientific research.

Bin Wu, a junior in Electrical Engineering, is this year’s recipient of the Henry Ford II Scholar Award. This prize is given to the engineering student with the best academic record at the end of the third year of undergraduate study.

Trevor Wilson, sophomore in Mathematics has been chosen as this year’s winner of the Fredrick J. Zeigler Memorial Award. This award was established in 1989 to honor Frederick J. Zeigler, a member of the class of 1976 and an applied mathematician major. The award is given to a pure or applied mathematics student in the sophomore or junior year who has shown excellence in scholarship as demonstrated in class activities or in preparation of an original paper or essay in any subject area.
Surface composition in "Endurance Crater" is mapped with color-coded interpretation of data from the miniature thermal emission spectrometer on NASA's Mars Exploration Rover Opportunity. The information has been overlaid unto a view of the crater from Opportunity's navigation camera. Green, such as on some slopes, indicates material rich in the mineral hematite. Blue and purple, such as on some cliffs of exposed rock, indicate the presence of basalt. Basaltic material is volcanic in origin, but the basalt may have been broken down into sand by weathering, then re-deposited by wind or water. Red indicates areas covered by martian dust.

Mars Rover Opportunity Inspects Rock Ejected From Impact Crater

BY GUY WEBSTER

NASA's Mars Exploration Rover Opportunity has begun sampling rocks blasted out from a stadium-sized impact crater the rover is circling, and the very first one may extend our understand-
ing of the region's wet past. Opportunity is spending several weeks examining the crater's interior. The rover appears to have come from the area's central highlands, which are the highest point from which exposures of exposed rocks are visible in the cliffs. Opportunity's miniature thermal emission spectrometer is returning data for mapping the mineral composition of the rocks exposed at the crater's interior.

"We see the coarse hematite grains on the upper slopes and basaltic sand at the bottom," said Dr. Phil Christensen of Arizona State University. "The road ahead for that spectrometer. Most exciting is the basaltic signature in the layered cliffs." Radiotracers on top of the crater suggest that the basaltic material is from more than one place as it was formed.

Our working hypothesis is that volcanically eroded rock was transported to the crater's interior, where it was then transported and redeposited by wind or by liquid water," Christensen said.

At a press conference today in Montreal, Canada, Christensen and Squyres presented a preview of rover-science reports scheduled for this week, at a joint meet-
ing of the American Geophysical Union and the Canadian Geo-

"However," Squyres says, "it is different in subtle ways from what we saw at Eagle Crater: a little different in mineralogy, a little different in color. It may give us the first hint of what the environment was like before the conditions that produced the Eagle Crater rocks."

Inside Endurance Crater are multiple layers of exposed rocks that might provide information about a much longer period of time. Squyres, in his talk, said to the viewpoints around the rim, Opportunity's miniature thermal emission spectrometer is returning data for mapping the mineral composition of the rocks exposed at the crater's interior.

"We see the coarse hematite grains on the upper slopes and basaltic sand at the bottom," said Dr. Phil Christensen of Arizona State University. "The road ahead for that spectrometer. Most exciting is the basaltic signature in the layered cliffs." Radiotracers on top of the crater suggest that the basaltic material is from more than one place as it was formed.

Our working hypothesis is that volcanically eroded rock was transported to the crater's interior, where it was then transported and redeposited by wind or by liquid water," Christensen said.

At a press conference today in Montreal, Canada, Christensen and Squyres presented a preview of rover-science reports scheduled for this week, at a joint meet-
ing of the American Geophysical Union and the Canadian Geo-

"However," Squyres says, "it is different in subtle ways from what we saw at Eagle Crater: a little different in mineralogy, a little different in color. It may give us the first hint of what the environment was like before the conditions that produced the Eagle Crater rocks."

Inside Endurance Crater are multiple layers of exposed rocks that might provide information about a much longer period of time. Squyres, in his talk, said to the viewpoints around the rim, Opportunity's miniature thermal emission spectrometer is returning data for mapping the mineral composition of the rocks exposed at the crater's interior.

"We see the coarse hematite grains on the upper slopes and basaltic sand at the bottom," said Dr. Phil Christensen of Arizona State University. "The road ahead for that spectrometer. Most exciting is the basaltic signature in the layered cliffs." Radiotracers on top of the crater suggest that the basaltic material is from more than one place as it was formed.

Our working hypothesis is that volcanically eroded rock was transported to the crater's interior, where it was then transported and redeposited by wind or by liquid water," Christensen said.

At a press conference today in Montreal, Canada, Christensen and Squyres presented a preview of rover-science reports scheduled for this week, at a joint meet-
ing of the American Geophysical Union and the Canadian Geo-

"However," Squyres says, "it is different in subtle ways from what we saw at Eagle Crater: a little different in mineralogy, a little different in color. It may give us the first hint of what the environment was like before the conditions that produced the Eagle Crater rocks."

Inside Endurance Crater are multiple layers of exposed rocks that might provide information about a much longer period of time. Squyres, in his talk, said to the viewpoints around the rim, Opportunity's miniature thermal emission spectrometer is returning data for mapping the mineral composition of the rocks exposed at the crater's interior.

"We see the coarse hematite grains on the upper slopes and basaltic sand at the bottom," said Dr. Phil Christensen of Arizona State University. "The road ahead for that spectrometer. Most exciting is the basaltic signature in the layered cliffs." Radiotracers on top of the crater suggest that the basaltic material is from more than one place as it was formed.

Our working hypothesis is that volcanically eroded rock was transported to the crater's interior, where it was then transported and redeposited by wind or by liquid water," Christensen said.

At a press conference today in Montreal, Canada, Christensen and Squyres presented a preview of rover-science reports scheduled for this week, at a joint meet-
ing of the American Geophysical Union and the Canadian Geo-

"However," Squyres says, "it is different in subtle ways from what we saw at Eagle Crater: a little different in mineralogy, a little different in color. It may give us the first hint of what the environment was like before the conditions that produced the Eagle Crater rocks."

Inside Endurance Crater are multiple layers of exposed rocks that might provide information about a much longer period of time. Squyres, in his talk, said to the viewpoints around the rim, Opportunity's miniature thermal emission spectrometer is returning data for mapping the mineral composition of the rocks exposed at the crater's interior.

"We see the coarse hematite grains on the upper slopes and basaltic sand at the bottom," said Dr. Phil Christensen of Arizona State University. "The road ahead for that spectrometer. Most exciting is the basaltic signature in the layered cliffs." Radiotracers on top of the crater suggest that the basaltic material is from more than one place as it was formed.

Our working hypothesis is that volcanically eroded rock was transported to the crater's interior, where it was then transported and redeposited by wind or by liquid water," Christensen said.

At a press conference today in Montreal, Canada, Christensen and Squyres presented a preview of rover-science reports scheduled for this week, at a joint meet-
ing of the American Geophysical Union and the Canadian Geo-

"However," Squyres says, "it is different in subtle ways from what we saw at Eagle Crater: a little different in mineralogy, a little different in color. It may give us the first hint of what the environment was like before the conditions that produced the Eagle Crater rocks."

Inside Endurance Crater are multiple layers of exposed rocks that might provide information about a much longer period of time. Squyres, in his talk, said to the viewpoints around the rim, Opportunity's miniature thermal emission spectrometer is returning data for mapping the mineral composition of the rocks exposed at the crater's interior.

"We see the coarse hematite grains on the upper slopes and basaltic sand at the bottom," said Dr. Phil Christensen of Arizona State University. "The road ahead for that spectrometer. Most exciting is the basaltic signature in the layered cliffs." Radiotracers on top of the crater suggest that the basaltic material is from more than one place as it was formed.

Our working hypothesis is that volcanically eroded rock was transported to the crater's interior, where it was then transported and redeposited by wind or by liquid water," Christensen said.

At a press conference today in Montreal, Canada, Christensen and Squyres presented a preview of rover-science reports scheduled for this week, at a joint meet-
ing of the American Geophysical Union and the Canadian Geo-
“New” Dean Chosen

By GALLEN LORAM

As you all no doubt know, Dean Revel stopped down a month or two ago, which set off the search for a new Dean of Students. Well, I have the pleasure of announcing that we have a new Dean. But it would be no fun to merely announce a name, so I’ll give a couple of clues and you’ll see if you can guess who it is.

The incoming dean is a man who has consistently demonstrated concern for the students over a number of years. He’s often taken part in ditch day storks, serving as a Frenchman who is an impressive artist (and not just in visual art; in color­ful metaphors as well!) and a biologist. My guess is that you all know who I’m talking about by now.

I’m sure that you are all as pleased as I am to know that Jean-Paul Revel has generously agreed to give another year (of what has been more than full-time work to a theoretically part-time job) to us students and is returning after a family tragedy with redoubled empathy for students to help us keep on trekking throughout these tumultuous times.

Welcome back, Dean Revel, we’re wonderfully glad to have you for another year!

Welcome Back, Dean Revel!

Ephoronema, Caltech’s Men’s A Cappella group will be presenting Nearl Experience V — a two hour concert of classic Ephoronema music from 7:00-8:00 p.m. — Reception and presentation of documentaries, “Falun Dafa All Over the World” and “False Fire” — 8:00-10:00 p.m. — Feature presentation: To Live

Wednesday, May 25, 4:00-6:00 pm

Brown Gym

On Tahiti, a form of traditional Polynesian dance originating from the South Pacific Island of Tahiti, is famous for its sexual and dynamic storytelling. This two-hour workshop will focus on basic steps and proper technique, and is free and open to all.

Traditional Chinese Art Performances, Craft Show, and Lunch

Wednesday, May 26, noon-1:00 p.m.

Location TBA

Make your own lunch today. Learn how to wrap sushi rolls and then enjoy!

Hawaiian “Plate Lunch”

Friday, May 28, 5:15-7:00 p.m.

Beckman Institute Auditorium

Undergraduate Student Homes

“Plate lunch” describes a meal in Hawaii that brings together foods from the ethnic groups that have immigrated to Hawaii. (Dinner costs $11 with Caltech ID.)

Movie Night — Caltech C

Friday, May 28, 7:30-10:00 p.m.

Beckman Institute Auditorium

Enjoy lunch from a local Chinese restaurants ($3 per person)

Asian craft show features Origami, Silk flower, Bead work, Chinese knots and more. All crafts are created by members from Caltech Falun Club. Artwork will be moved to the Center for Student Services and will be displayed from May 26-June 4.

Movie night — Falun Club

Wednesday, May 26, 7:30-10:00 p.m.

Beckman Institute Auditorium

Tuesday, May 25, 4:00-6:00 pm

Brown Gym

The talk will be followed by an informal forum with DeRose on the role of Mathematics in Industry. Please bring your questions.

Wednesday, May 26, 3:00 PM in the Beckman Institute Auditorium. Refreshments will be served at 2:30 PM.

The Caltech student chapter of SIAM presents:

Tony DeRose, Pixar Animation Studios.

“How Mathematics is Changing Hollywood”

Wednesday, May 26, 3:00 PM in the Beckman Institute Auditorium. Refreshments will be served at 2:30 PM.

Film making is undergoing a digital revolution brought on by advances in animation such as computer technology, computational physics and computer graphics. This talk will provide a behind the scenes look at how fully digital films — such as Pixar’s “Monsters Inc” and “Finding Nemo” — are made, with particular emphasis on the role that mathematics plays in the revolution.

The talk will be followed by an informal forum with DeRose on the role of applied mathematics in industry. Please bring your questions.

This is the second “Meeting on Mathematics in Industry” presented by the Caltech student chapter of the Society for Industrial and Applied Math.

Continued on Page 2, Column 3

Welcome Back, Dean Revel!
cast flag" regulation which requires that all HDTVs prevent the recording of content that has been broadcast with a "don't copy" flag. On the legal side of the discussion, Prof. Burk discussed traditional copyright protections and their exemptions including the fair use provision which he described as a "safety valve for the 1st Amendment." According to Burk, the anti-circumvention regulations forbid the use and trafficking of access circumvention tools and forbid the trafficking of access circumvention tools, effectively giving copyright owners a "parasite" copyright on their materials that goes far beyond normal protections. In addition, Prof. Burk believes that the DMCA hasn't been effective in controlling access to content while at the same time stifling research and discussion in an academic environment and having many unintended consequences including the use by a printer manufacturers to sue cartridge refill makers and the use by a company that makes garage openers to sue a maker of universal remotes.

With panel presentations over, the mock trial got underway. As promised, a video showing President Baltimore in handcuffs was shown. The video also laid out the facts of the case. Prof. Law at Caltech teaches a class on digital encryption and that the US government mandated a switch to a 128-bit system for its systems in the late 90s. Furthermore, Schoen claimed that even given Moore's Law, it would take an eternity before 128-bit could be broken by brute force. With regard to Law, Baltimore and Caltech, the defense argued that their 1st Amendment rights were violated by the DMCA.

In response, the prosecution argued that the copyrighting agreement from Brad Hunt, that 5C is effective because it has thus far never been broken and that a home user by himself would take decades to break the 5C key. Since a 7-hour movie contains at least 60 keys, it would be infeasible for a home user to break the encryption.

Regarding the 1st Amendment issues, the prosecution argued that while some code can be expressive speech, the code in this case was not and that one cannot hide behind academic freedom to commit crimes. Furthermore, because it was available to anyone on the Internet and because Law and Baltimore refused to take it down asked by the DOJ, Law and Baltimore are contributory infringers.

After the arguments, Judge Lew retired to make his decision. During the time a second panel discussion was held to discuss alternative methods for protecting digital content. Ronald Wheeler, Senior Vice President for Content Protection at the Fox Entertainment Group argued that the situation is very good. He described the existence of the DMCA to be critical for the success of DVDs and the movie industry.

In contrast, Fred Von Lohmann, Senior Staff Attorney for the EFF argued that the DMCA oversteps its boundaries and has had a lot of unintended consequences. In return, the DMCA has done nothing to prevent piracy. According to Von Lohmann, every movie DVD is available on P2P networks right now. Von Lohmann believes that there are three options for the future: repeal the DMCA and allow new business models to adapt to digital distribution, institute mandatory licensing, or institute mandatory technology protection.

After an hour of deliberation, Judge Lew returned and delivered his preliminary ruling. He allowed the case against Caltech to be dismissed on the grounds of double jeopardy exclusion of the DMCA. On all other counts, he ruled against the motion for dismissal. The 5C DTCP is effective with in the broad definition in the DMCA and Johnson, Law and Baltimore are liable.

Morley meets with her staff to discuss some of the changes that she wants to implement for registration next year.

Continued from Page 1, Column 2

Continued from Page 1, Column 5

Registrar's Agenda Includes Class Rosters, Automated Drop Cards

Continued from Page 1, Column 6

Advanced Tissue Sciences Founder Speaks About Research, Business

Morley talks about attacking 56-bit encryption and that the US government mandated a switch to a 128-bit system for its systems in the late 90s. Furthermore, Schoen claimed that even given Moore's Law, it would take an eternity before 128-bit could be broken by brute force. With regard to Law, Baltimore and Caltech, the defense argued that their 1st Amendment rights were violated by the DMCA.

In response, the prosecution argued that the copyrighting agreement from Brad Hunt, that 5C is effective because it has thus far never been broken and that a home user by himself would take decades to break the 5C key. Since a 7-hour movie contains at least 60 keys, it would be infeasible for a home user to break the encryption.

Regarding the 1st Amendment issues, the prosecution argued that while some code can be expressive speech, the code in this case was not and that one cannot hide behind academic freedom to commit crimes. Furthermore, because it was available to anyone on the Internet and because Law and Baltimore refused to take it down at the request of the DOJ, Law and Baltimore are contributory infringers.

After the arguments, Judge Lew retired to make his decision. During the time a second panel discussion was held to discuss alternative methods for protecting digital content. Ronald Wheeler, Senior Vice President for Content Protection at the Fox Entertainment Group argued that the situation is very good. He described the existence of the DMCA to be critical for the success of DVDs and the movie industry.

In contrast, Fred Von Lohmann, Senior Staff Attorney for the EFF argued that the DMCA oversteps its boundaries and has had a lot of unintended consequences. In return, the DMCA has done nothing to prevent piracy. According to Von Lohmann, every movie DVD is available on P2P networks right now. Von Lohmann believes that there are three options for the future: repeal the DMCA and allow new business models to adapt to digital distribution, institute mandatory licensing, or institute mandatory technology protection.

After an hour of deliberation, Judge Lew returned and delivered his preliminary ruling. He allowed the case against Caltech to be dismissed on the grounds of double jeopardy exclusion of the DMCA. On all other counts, he ruled against the motion for dismissal. The 5C DTCP is effective with in the broad definition in the DMCA and Johnson, Law and Baltimore are liable.
D. Kenta/The California Tech

The south houses are going to receive a renovation that includes everything from rejuvenating the face of the building to upgrading rooms to relandscaping the courtyard.

$5.4 Million Marked For Repairing Rooms

The California Tech
Pasadena, CA 91125

UCLA Predicts High Magnitude Earthquake; Professor Skeptical

By ROYAL REINECKE

A group at UCLA under professor Vladimir Keilis-Borok shocked both Southern California Residents and the scientific community with its recent predictions for an earthquake of at least magnitude 6.4 to happen by this September. Keilis-Borok places the earthquake to occur somewhere within a 12,000 square mile area spanning from the Mojave Desert to the Mexican border to near Los Angeles.

Clearly such a prediction gives cause for Californians to take precautions, but Caltech professor of Geophysics and Director of the Seismological Laboratory Jeroen Tromp is doubtful of the group’s approach. “The trick is in the cookbook,” he explains. Tromp reveals that Keilis-Borok bases his method entirely on “pattern recognition” without any actual scientific understanding behind it.

Keilis-Borok looks for sequences of earthquakes in space and time. These “chains” as he refers to them, can be characterized by seven or eight parameters such as proximity of the quakes, minimum magnitude and other factors that might intuitively lead you to believe that a much larger earthquake could occur nearby. For each of the factors, a number is assigned with respect to how well the chain fits and if the total exceeds a certain value, then Keilis-Borok makes a prediction.

Different regions such as Southern California, Northern California, Japan, etc. each add differing values for the various parameters in order that the algorithm fit best for each individual area.

By testing his method on the catalogue of recorded earthquakes, Keilis-Borok trains his algorithm to make more accurate predictions. So far he has been able to detect two massive earthquakes in the past year before they happened—the first of magnitude 6.5 in central California and the second an 8.1 magnitude quake in Japan.

Yet Tromp remains skeptical of the accuracy of these predictions.

First of all he notes the huge area encompassed by each prediction. Tromp both literally and figuratively points to “the large gray area” that shows where each predicted earthquake could have occurred. Not only that, the predictions describe areas that are naturally very active tectonically. Additionally the predictions span a fairly long window of time, usually about nine months. The possible time window for the current predicted quake in southern California spans October 29, 2003 through September 5, 2004.

Tromp feels that the predicted earthquakes that occurred in 2003 could have happened just as easily by chance. “Two predictions do not provide enough evidence for him to take Keilis-Borok’s method as foolproof.”

Tromp firmly believes “there is no point in having a press release” about these predictions whether or not they come true. He explains that in the case that an earthquake does occur, geophysicists will look bad for not doing something. If, on the other hand, no earthquake occurs, then the geophysicists will lose their credibility and the public will think them bad at predicting, even into the future when they may possibly find an accurate scientific way of prediction.

Keilis-Borok’s method can be considered a failure in two possible circumstances. First, failure must be accepted when a predicted earthquake does not occur or is not of the minimum magnitude predicted. For example, if an earthquake of magnitude 6.3 happens in southern California by September, this will be a failure, while an earthquake of magnitude 6.4 or greater indicates success. The second way for the group to fail is if some large earthquake occurs that they failed to predict beforehand.

Tromp definitely believes “Keilis-Borok’s research is worth pursuing.” However he would strongly like to see much more concrete evidence and understanding before using the method to inform the public at large.